В начало страницы

Тема Д26 C3

Учитываемые варианты

Различие заданий

(Подсказка: для перехода к заданию нажмите на его название или на его линию.)

Максимальное допустимое различие в подтеме: 0.65. Выбрать другое: 0.35, 0.5.

Подтема 1

Задание 1.1 (ОСН-2016, №11326)

Варианты

Текст задания

Паша и Валя играют в следующую игру: перед игроками лежит куча камней, каждый игрок за один ход может добавить в кучу 1 камень или удвоить количество камней в куче. Камни для ходов не ограничены. Выигрывает тот игрок, после хода которого в кучу оказалось 24 и более камней, но не более 38. Если после хода игрока в куче более 38 камней, выигрывает его соперник. Первым ходит Паша.

Пусть S — начальное количество камней в куче.

а) При каких значениях S Паша может выиграть первым ходом?

б) У кого есть выигрышная стратегия при S = 20, 21, 22.

в) У кого выигрышная стратегия при S = 10, 11?

г) У какого игрока выигрышная стратегия при S = 9? Нарисуйте дерево решений.

Подтема 2

Задание 2.1 (ДЕМО-2016, №9377)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, что в кучах всего будет 73 камня или больше.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Например, при начальных позициях (6, 34), (7, 33), (9, 32) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно удвоить количество камней во второй куче.

Задание 1. Для каждой из начальных позиций (6, 33), (8, 32) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 2. Для каждой из начальных позиций (6, 32), (7, 32), (8, 31) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

Задание 3. Для начальной позиции (7, 31) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной Вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.

Задание 2.2 (ОСН-2019, №18832)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) два камня или увеличить количество камней в куче в три раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (12, 7), (30, 7), (10, 9), (10, 21). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 68. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, что в кучах всего будет 68 или больше камней.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Например, при начальных позициях (6, 36), (7, 35), (9, 34) выигрышная стратегия есть у Пети. Чтобы выиграть, ему достаточно утроить количество камней во второй куче.

 

Задание 1. Для каждой из начальных позиций (6, 21), (7, 20) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт

к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

 

Задание 2. Для каждой из начальных позиций (4, 20), (6, 20) укажите, кто из игроков имеет выигрышную стратегию. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии.

 

Задание 3. Для начальной позиции (5, 20) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Постройте дерево всех партий, возможных при указанной Вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы.

Задание 2.3 (ДОСР-2018, №15642)

Варианты

Текст задания ( )

Два игрока, Паша и Вася, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 68.

Задание 1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S. б)Укажите такое значение S, при котором Паша не может выиграть за один ход, но при любом ходе Паши Вася может выиграть своим первым ходом. Опишите выигрышную стратегию Васи.

Задание 2. Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася. Для каждого указанного значения S опишите выигрышную стратегию Паши.

Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи (в виде рисунка или таблицы).

Задание 2.4 (ОСН-2018, №15994)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

добавить в кучу два камня или

увеличить количество камней в куче в два раза.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 80. Победителем считается игрок, сделавший последний ход, то есть первым получивший суммарно в обеих кучах 80 или более камней.

В начальный момент в первой куче было 7 камней, а во второй S камней, 1 ≤ S ≤ 72.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы следующего стратегии игрока, которые не являются для него безусловно выигрышными.

Выполните следующие задания.

Задание 1.

а) Назовите все значения S, при которых Петя может выиграть первым ходом, причём у Пети есть ровно один выигрывающий ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—Петя не может выиграть за один ход.

—Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

Задание 3.

Укажите такое значение S, при котором одновременно выполняются два условия:

—у Вани есть выигрышная стратегия, позволяющая ему выиграть своим первым или вторым ходом при любой игре Пети.

—у Вани нет стратегии, которая позволит ему гарантированно выиграть своим первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в позиции.

Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не будет верным ответом на это задание.

Задание 2.5 (ДОСР-2019, №18454)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень либо увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делатьходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 26.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 26 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 25.

Будем говорить, что игрок имеет выигрышную стратегию, если он может

выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполнены два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы).

В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Задание 2.6 (ОСН-2019, №18805)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 18 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 42.

Победителем считается игрок, сделавший последний ход, т. е. первым получивший кучу, в которой будет 42 или больше камней.

В начальный момент в куче было S камней; 1 меньше или равно S меньше или равно 41.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

Задание 1.

а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—Петя не может выиграть за один ход;

—Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

Задание 3.

Укажите значение S, при котором одновременно выполняются два условия:

—у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Задание 2.7 (ОСН-2019, №18728)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 48.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 48 или больше камней.

В начальный момент в куче было S камней; 1 меньше или равно S меньше или равно 47.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

Задание 1.

а) Укажите все такие значения числа S, при которых Петя может выиграть один ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—Петя не может выиграть за один ход;

—Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

Задание 3.

Укажите значение S, при котором одновременно выполняются два условия:

—у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Задание 2.8 (ДОСР-2018, №15866)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 75 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 70.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 70 или больше камней.

В начальный момент в куче было S камней; 1 меньше или равно S меньше или равно 69.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

Задание 1.

а) Укажите все такие значения числа S, при которых Петя может выиграть один ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2.

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—Петя не может выиграть за один ход;

—Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

Задание 3.

Укажите значение S, при котором одновременно выполняются два условия:

—у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Задание 2.9 (ДОСР-2020, №23924)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в пять раз. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 75 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 63.

Победителем считается игрок, сделавший последний ход, т. е. первым получивший кучу, в которой будет 63 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 62.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Выполните следующие задания.

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

Задание 3

Укажите значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Задание 2.10 (ДОСР-2020, №25962)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в пять раз. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 75 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 68.

Победителем считается игрок, сделавший последний ход, т. е. первым получивший кучу, в которой будет 68 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 67.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Выполните следующие задания.

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

Задание 3

Укажите значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Задание 2.11 (ДОСР-2019, №18095)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤68.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

Задание 2.12 (ДОСР-2019, №6435)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤68.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

2. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём (а) Петя не может выиграть за один ход и (б) Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в куче.

Задание 2.13 (ДОСР-2016, №11127)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 18 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 28.

Победителем считается игрок, сделавший последний ход, т. е. первым получивший кучу, в которой будет 28 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 27.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором одновременно выполняются два условия:

− у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

− у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

 

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рисунке на рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

Задание 2.14 (ДЕМО-2015, №7471)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 18 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 35. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 35 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 34. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

Задание 3

Укажите значение S, при котором одновременно выполняются два условия:

− у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

− у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рисунке на рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

Задание 2.15 (ДОСР-2017, №13372)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 65. Победителем считается игрок, сделавший последний ход, т. е. первым получивший кучу, в которой будет 65 или больше камней. В начальный момент в куче было S камней 1 ≤ S ≤ 64.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

Задание 1

а) Укажите все такие значения числа S, при которых Петя может выиграть в один ход, и соответствующие выигрывающие ходы. Если при некотором значении S Петя может выиграть несколькими способами, достаточно указать один выигрывающий ход.

б) Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом. Опишите выигрышную стратегию Вани.

 

Задание 2

Укажите два таких значения S, при которых у Пети есть выигрышная

стратегия, причём одновременно выполнены два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для каждого указанного значения S опишите выигрышную стратегию Пети.

 

Задание 3

Укажите значение S, при котором:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте ходы, в узлах указывайте позиции.

Задание 2.16 (ДОСР-2015, №8114)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 55. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 55 или больше камней.

В начальный момент в первой куче было 5 камней, во второй куче – S камней; 1 ≤ S ≤ 49.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход, и соответствующие выигрывающие ходы. Если при некотором значении S Петя может выиграть несколькими способами,

достаточно указать один выигрывающий ход.

б) Сколько существует значений S, при которых Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом?

2. Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для указанного значения S опишите выигрышную стратегию Пети.

3. Укажите значение S, при котором одновременно выполняются два условия:

− у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

− у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы). На рёбрах дерева указывайте ходы,

в узлах указывайте позиции. В заданиях 2 и 3 достаточно указать одно значение S и объяснить, почему это

значение удовлетворяет условию соответствующего задания.

Задание 2.17 (ДЕМО-2020, №16053)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (30, 7), (10, 8), (10, 21). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 68. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 68 или больше камней.

В начальный момент в первой куче было шесть камней, во второй куче — S камней; 1 ≤ S ≤ 61.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

 

Выполните следующие задания.

Задание 1.

а) Укажите все такие значения числа S, при которых Петя может выиграть за один ход.

б) Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Задание 2. Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для указанного значения S опишите выигрышную стратегию Пети.

Задание 3. Укажите значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Для указанного значения S опишите выигрышную стратегию Вани.

Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани (в виде рисунка или таблицы).

В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Задание 2.18 (ДЕМО-2017, №11362)

Варианты

Текст задания ( )

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя. В начальный момент в куче было S камней, 1 ≤ S ≤ 19.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

 

Выполните следующие задания.

1. а) При каких значениях числа S Паша может выиграть в один ход? Укажите все такие значения и соответствующие ходы Паши.

б) У кого из игроков есть выигрышная стратегия при S = 18, 17, 16? Опишите выигрышные стратегии для этих случаев.

2. У кого из игроков есть выигрышная стратегия при S = 9, 8? Опишите соответствующие выигрышные стратегии.

3. У кого из игроков есть выигрышная стратегия при S = 7? Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

Задание 2.19 (ОСН-2016, №11322)

Варианты

Текст задания ( )

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра заканчивается, когда в куче не меньше 42 камней.

При этом, если число камней в куче не превышает 74, то побеждает игрок, сделавший последний ход, иначе выигрывает его оппонент. В начальный момент в куче было S камней; 1 ≤ S ≤ 41.

 

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

Задание 1

а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Опишите его стратегию.

б) У кого есть выигрышная стратегия при S = 38, 39, 40?

 

Задание 2

Кто из игроков имеет выигрышную стратегию при S = 19, 20?

 

Задание 3

Кто из игроков имеет выигрышную стратегию при S = 18?

 

В каждом случае опишите выигрышную стратегию. В задании 3 постройте дерево игры или таблицу, где ребрами являются сделанные ходы, а узлами - позиции камней.

Задание 2.20 (ОСН-2016, №11328)

Варианты

Текст задания ( )

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или увеличить число камней в 2 раза. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 14 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 24. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 24 или больше камней. Но, если камней в куче становится больше 38, то проигрывает тот, кто сделал последний ход. Например, в куче было 20 камней. Паша, удвоив количество камней, получил 40. В таком случае выигрывает не Паша, а Валя.

В начальный момент в куче было S камней, 1 ≤ S ≤ 23.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

1. а) Укажите все такие значения числа S, при которых Паша может выиграть в один ход. Обоснуй те, что найдены все нужные значения S, и укажите выигрывающие ходы.

б) Кто имеет выигрышную стратегию при S = 22, 21, 20?

2. Кто имеет выигрышную стратегию при S = 10, 11?

3. Кто имеет выигрышную стратегию при S = 9? Опишите эту стратегию, постройте дерево ходов.

Задание 2.21 (ОСН-2016, №11331)

Варианты

Текст задания ( )

Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу 1 камень или удвоить количество камней в куче. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 14 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче S становится не менее 22. Победителем считается игрок, сделавший последний ход, если в куче осталось не менее 22 камней, но не больше 34 камней. Если же после завершающего хода игрока в куче оказывается больше 34 камней, то игрок, сделавший последний ход — проигрывает.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Выполните следующие задания. Во всех случаях обосновывайте свой ответ.

 

1) а) При каких значениях Паша выиграет 1 ходом. б) Кто выиграет при S=20, 19, 18.

2) Кто выиграет при S=10, 9.

3) Кто выиграет при S=8. Нарисуйте дерево партий.

Задание 2.22 (ОСН-2016, №11335)

Варианты

Текст задания ( )

Два игрока, Петя и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить в кучу четыре камня, или увеличить количество камней в куче в 2 раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 52. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 52 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 51.

1. При каких S: 1а) Петя выигрывает первым ходом; 1б) Валя выигрывает первым ходом?

2. Назовите два значения S, при которых Петя может выиграть своим вторым ходом.

3. Назовите одно значение S, при котором Валя выигрывает своим первым или вторым ходом.

Задание 2.23 (ОСН-2020, №26969)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит табличка, на которой написано два числа. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок заменить любое из этих чисел на их

сумму. Игра завершается в тот момент, когда сумма двух чисел становится не менее 28. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что сумма чисел будет 28 или больше.

1. Назовите максимальное значение S, при котором Петя не может выиграть первым ходом из позиции (7, S)

2. Кто имеет выигрышную стратегию из позиции (6,7)? Опишите эту стратегию.

3. Кто имеет выигрышную стратегию из позиции (2,3)? Опишите эту стратегию.

Задание 2.24 (ОСН-2020, №26998)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня, играют в следующую игру. У игроков есть табличка, на которой записана пара неотрицательных чисел. Будем называть эту пару чисел позицией. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может заменить одно из чисел пары по своему выбору на сумму обоих чисел. Так, например, если перед ходом игрока была позиция (2, 4), то после его хода будет позиция (6, 4) или (2, 6). Игра завершается в тот момент, когда сумма чисел пары становится не менее 67. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую пару, что сумма ее чисел стало не менее 67.

1. Перед ходом Пети на табличке записана пара чисел (12, S). Укажите минимальное значение S — такое, что Петя может выиграть одним своим первым ходом.

2. Для начальной позиции (15, 14) укажите, кто из игроков имеет выигрышную стратегию. Опишите выигрышную стратегию.

3. Для начальной позиции (2, 4) укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при этой выигрышной стратегии (в виде рисунка или таблицы). В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание.

Подтема 3

Задание 3.1 (ДЕМО-2018, №13753)

Варианты

Текст задания ( )

Два игрока, Петя и Ваня играют в следующую игру. На столе в кучке лежат фишки. На лицевой стороне каждой фишки написано двузначное натуральное число, обе цифры которого находятся в диапазоне от 1 до 4. Никакие две фишки не повторяются. Игра состоит в том, что игроки поочередно берут из кучки по одной фишке и выкладывают в цепочку на стол лицевой стороной вверх таким образом, что каждая новая фишка ставится правее предыдущей и ближайшие цифры соседних фишек совпадают. Верхняя часть всех выложенных фишек направлена в одну сторону, то есть переворачивать фишки нельзя. Например, из фишки, на которой написано 23, нельзя сделать фишку, на которой написано 32. Первый ход делает Петя, выкладывая на стол любую фишку из кучки. Игра заканчивается, когда в кучке нет ни одной фишки, которую можно добавить в цепочку. Тот, кто добавил в цепочку последнюю фишку, выигрывает, а его противник проигрывает.

Будем называть партией любую допустимую правилами последовательность ходов игроков, приводящую к завершению игры. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, указать, какую фишку он должен выставить в любой ситуации, которая ему может встретиться при различной игре противника.

 

Пример партии.

Пусть на столе в кучке лежат фишки: 11, 12, 13, 21, 22, 23.

Пусть первый ход Пети 12.

Ваня может поставить 21, 22 или 23. Предположим, он ставит 21. Получим цепочку 12-21.

Петя может поставить 11 или 13. Предположим, он ставит 11. Получим цепочку 12-21-11.

Ваня может поставить только фишку со значением 13. Получим цепочку 12-21-11-13.

Перед Петей в кучке остались только фишки 22 и 23, то есть нет фишек, которые он мог бы добавить в цепочку. Таким образом, партия закончена, Ваня выиграл.

 

Выполните следующие три задания при исходном наборе фишек в кучке {12, 14, 21, 22, 24, 41, 42, 44}.

Задание 1.

а) Приведите пример самой короткой партии, возможной при данном наборе фишек. Если таких партий несколько, достаточно привести одну.

б) Пусть Петя первым ходом пошел 42. У кого из игроков есть выигрышная стратегия в этой ситуации? Укажите первый ход, который должен сделать выигрывающий игрок, играющий по этой стратегии. Приведите пример одной из партий, возможных при реализации выигрывающим игроком этой стратегии.

Задание 2. Пусть Петя первым ходом пошел 44. У кого из игроков есть выигрышная стратегия, позволяющая в этой ситуации выиграть своим четвертым ходом? Постройте в виде рисунка или таблицы дерево всех партий, возможных при реализации выигрывающим игроком этой стратегии. На рёбрах дерева указывайте ход, в узлах — цепочку фишек, получившуюся после этого хода.

Задание 3. Укажите хотя бы один способ убрать 2 фишки из исходного набора так, чтобы всегда выигрывал не тот игрок, который имеет выигрышную стратегию в задании 2. Приведите пример партии для набора из 6 оставшихся фишек.